

Decentralized Identity Management using Blockchain

Group: Shawal Khalid, Nikhil Ram, Ashish Aggarwal, Srujan Vithalani

Motivation

Over the last 25 years, advertising-based business models, lack of consumer awareness, and weak privacy legislation have enabled service providers to capture massive amounts of private information.

- 2017 Equifax breach exposed the private and personally identifying information of more than **140 million** American consumers.
- Facebook/Cambridge Analytica scandal revealed that the private records of more than 87 million Facebook users
- One spammer in India was responsible for **202 million** scam calls in 2021, which works out at 27,000 fraud attempts per hour.
- Yahoo 2013 3 billion user accounts exposed

original

theft

impersonation

fake

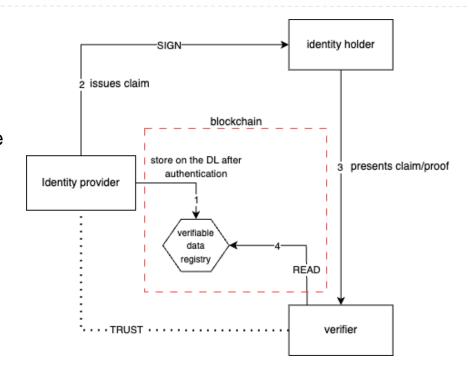
Research Problem

- Study of traditional systems.
- Literature review of system which curbs issues in traditional systems.
- Present a few enhancements which we think are the most secure.
- Discuss security issues in these enhancements.
- Compare and contrast offerings in the market.

Traditional Systems

- Physical documents given to officials or representatives.
- No visibility to document safekeeping or shredding.
- Loose and unsecure means of acceptable document sharing
 - "pls send on everyonecanthissee email",
 - "pls whatsapp",
 - "can you xerox from this shop that has 1000 visitors daily"
- No visibility if company's database is still using "admin, admin" as the credentials.

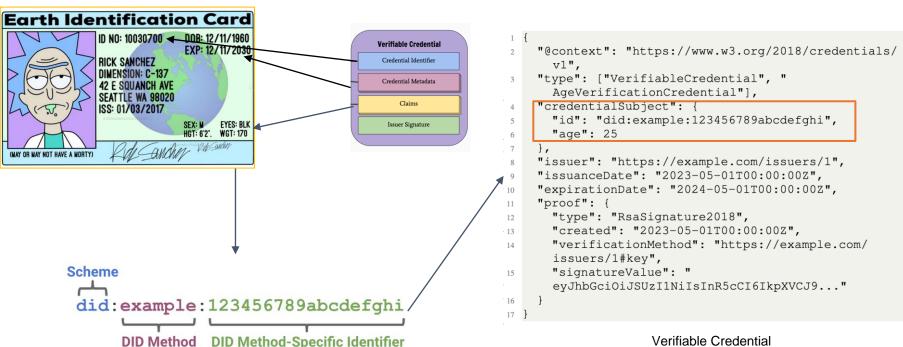
Outcomes?


- "you have won \$1M in lottery, reply to avail"
- "Hi we are from the homeland security, your documents are missing"
- "5000\$ daily income, Apply now!"

Self Sovereign Model (SSI)

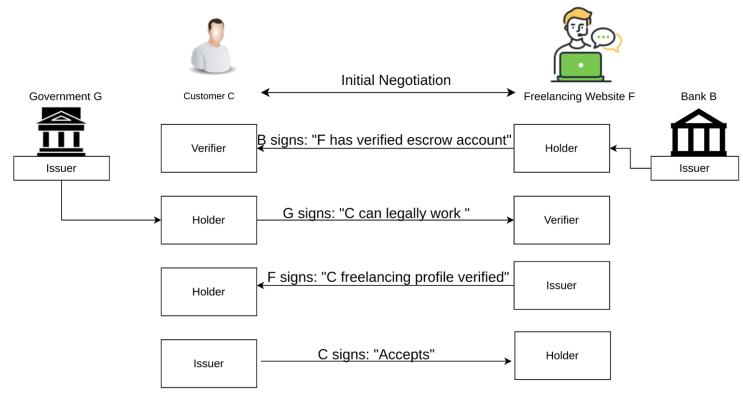
Properties

- allows users to have full control over the credentials they hold and it's usage.
- users have the flexibility to store and use the digital wallet at their discretion
- permits users to disclose their personal information at their own discretion.
- Decentralization of control
- Security


SSI - System Model

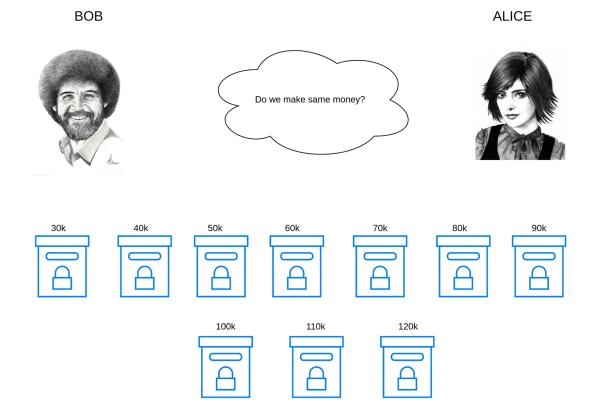
VCs and DIDs form the foundation of the SSI.

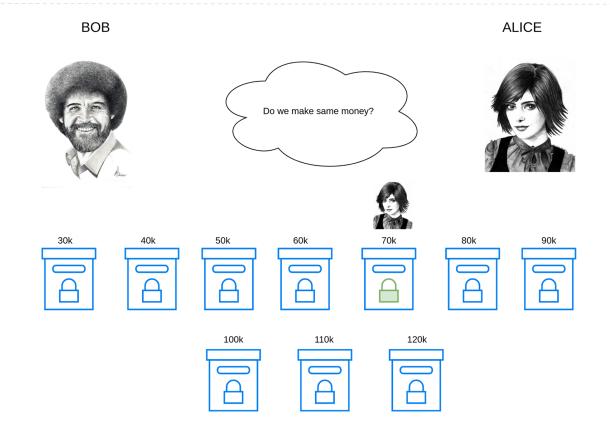
- Verifiable Credentials (VCs): Cryptographically secure, machine-readable, & tamper-resistant digitized alternative to physical, realworld credentials such as a passport, national ID card, or driving license.
- Decentralized Identifiers (DIDs): Unique identifiers, self-generated by individuals or organizations, Linked to VCs and used to establish a verifiable link between an individual and their personal data.


SSI - System Model

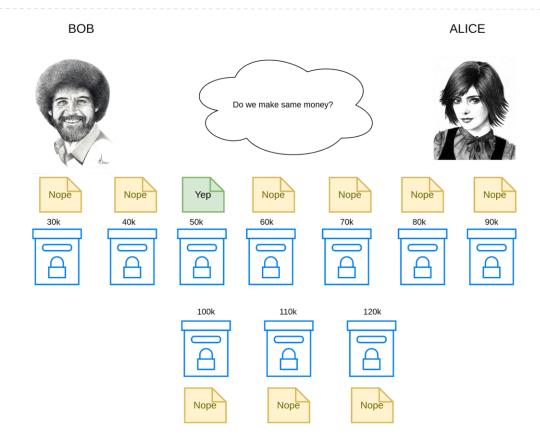
Verifiable Credential

SSI - Real life Application

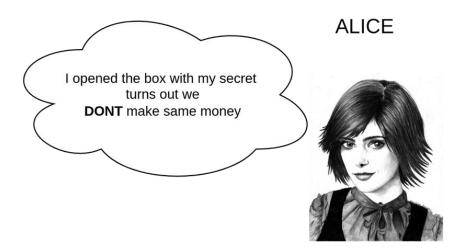

Secure SSI - System Model


- Different types of implementations allow us to control what data we send to the verifier.
- How can we hide **all** our personal data, even the metadata?

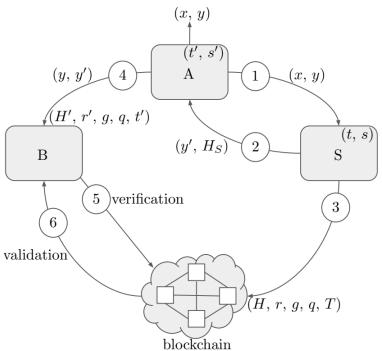
```
"@context": "https://www.w3.org/2018/credentials/
      v1",
    "type": ["VerifiableCredential", "
      AgeVerificationCredential"],
    "credentialSubject": {
      "id": "did:example:123456789abcdefghi",
      "age": 25
    "issuer": "https://example.com/issuers/1",
    "issuanceDate": "2023-05-01T00:00:00Z",
    "expirationDate": "2024-05-01T00:00:00Z",
    "proof": {
11
      "type": "RsaSignature2018",
      "created": "2023-05-01T00:00:00Z",
13
      "verificationMethod": "https://example.com/
      issuers/1#key",
      "signatureValue": "
15
      eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9..."
```




```
"@context": "https://www.w3.org/2018/credentials/
    "type": ["VerifiableCredential", "
      AgeVerificationCredential",
      ZKPVerificationCredential"1
    "credentialSubject": {
      "id": "did:example:123456789abcdefghi",
      "zkp": {
        "C": "0x123456789abcdef", // the value of C
        "proof": {...}
                                   // the ZKP proving
      knowledge of x
    "issuer": "https://example.com/issuers/1",
    "issuanceDate": "2023-05-01T00:00:00Z",
    "expirationDate": "2024-05-01T00:00:00Z",
    "proof": {
      "type": "RsaSignature2018",
      "created": "2023-05-01T00:00:00Z",
      "verificationMethod": "https://example.com/
      issuers/1#key",
      "signatureValue": "
      eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9..."
19
```

BOB



How ZKP can be used in SSI?

To show how a prover can convince a verifier that they possess a secret attribute without disclosing the attribute

SSI generation protocol using a ZKP Schnorr: generation (1,2), registration (3) and verification (4,5,6) of a Self-Sovereign Identity

Threat Model

But, is even the best tool safe?

Threat Model

Despite the secure features offered by ZKP, is it still prone to some attacks.

- Replay attacks: Attacker intercepts & replays a valid ZKP message to the verifier, impersonating the original sender.
- ❖ Denial-of-service attacks: Attacker may attempt to launch a DoS attack against a ZKP protocol by flooding the system with requests or by disrupting the communication between the prover and verifier.
- **Computationally intensive**: ZKP protocols require significant computational resources to generate and verify proofs, which can limit their practicality.

Threat Model

		Prover scalability (quasilinear time)	Verifier scalability (polyalgorithmic time)	Transparency (public randomness)	Post-quantum security
	hPKC *	YES	Only repeated computation	NO	NO
ĺ	DLP **	YES	NO	YES	NO
ĺ	IP ***	YES	NO	YES	NO
Ì	MPC ****	YES	NO	YES	YES
	IVC+hPKC *****	YES	YES	NO	NO
	zkp-STARK	YES	YES	YES	YES
	$\mathbf{ZKP}_{(a\cdot b)}$	YES	YES	YES	NO

^{*} hPKC : homomorphic Public-Key Cryptography ; ** DLP : Discrete Logarithm Problem ; *** IP : Interactive Proofs based ; **** ; MPC : secure Multi-Party Computation ; ***** ; IVC : Incrementally Verifiable Computation [18].

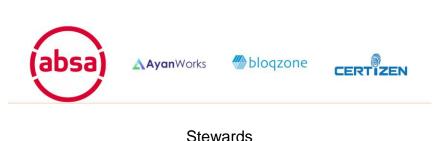
Limitations of SSI

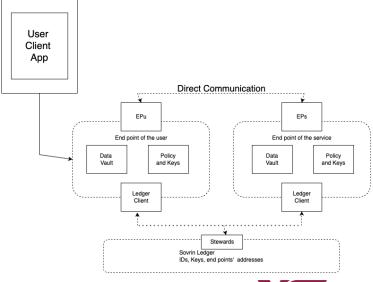
- ❖ **Sybil attacks**: A single user creates multiple identities to gain control of the system or to disrupt its operation.
- Man-in-the-middle attacks: An attacker intercepts communication between two parties to steal data or to manipulate the communication.
- Identity revocation: Difficult to resolve in SSI systems since no central server can simply revoke users' cryptographic keys.
- Key Leakage: In the overall setting of SSI, proper key management is vital to its widespread adoption.
- Interoperability: Lack of interoperability between different SSI systems could limit their widespread adoption.

Г

Market Offerings

- ➤ What are the current market leading SSI Solutions?
- ➤ We discuss 3 products
 - Sovrin,
 - ShoCard
 - uPort.

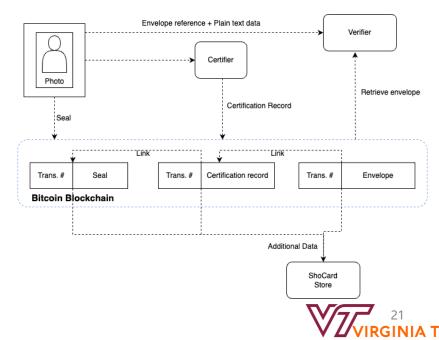




Sovrin

> Sovrin has three networks for SSI. All are based on HyperLedger Indy, which is a type of distributed ledger software.

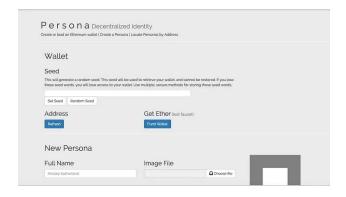
> The decentralized party here is their stewards. "Anvone can be a steward"

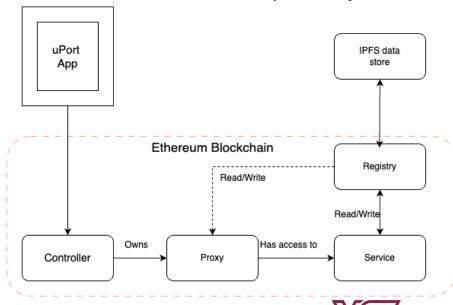


ShoCard

 ShoCard like others, is also a commercial SSI solution which runs on bitcoin blockchain and is solely working on replacing banking and credit card

identification process.




uPort

• uPort is rather a different SSI solution, which works on Ethereum Blockchain. It confirms transparency and identity of an individual.

It will associate an Ethereum Address with a Name and Profile Picture, and potentially other info

like email address, Twitter handle, etc.,

Contributions

- Review of traditional systems.
- Decentralized architecture to enable individuals to control their identity.
- Introduction to self-sovereign identity (SSI) systems.
- Discussed how ZKP can secure SSI.
- Studied potential adversarial attacks on ZKP based SSI.
- Provided insights into limitations & challenges of blockchain-based IDMS.
- Commercial market offerings regarding applicability of BC-based SSI solutions.

References

- 1. https://www.w3.org/TR/did-core/
- 2. https://freecontent.manning.com/the-basic-building-blocks-of-ssi/
- 3. https://ieeexplore.ieee.org/document/9927415
- 4. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10105959
- https://sovrin.org/stewards/
- 6. https://medium.com/shocard/why-shocard-is-the-premier-blockchain-based-mobile-identity-platform-6fad15410106
- 7. https://freecontent.manning.com/the-basic-building-blocks-of-ssi/
- 8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371034/

Thank You!